Practice (3.3)

For \#1 to \#3, show your calculations in your notebook.

1. Determine the volume of each cylinder.

a)

b)

c)

$$
V=25.12 \mathrm{~cm}^{3}
$$

c)

$$
\begin{aligned}
V & =\pi r^{2} h \\
& =(3.14)(2)^{2}(0.5) \\
V & =6.28 \mathrm{~m}^{3}
\end{aligned}
$$

3. What is the radius of each cylinder?
a) height $=10 \mathrm{~cm}$, volume $=502.4 \mathrm{~cm}^{3}$
b) height $=8 \mathrm{~cm}$, volume $=1230.88 \mathrm{~cm}^{3}$
c) height $=5 \mathrm{~cm}$, volume $=2653.3 \mathrm{~cm}^{3}$
4. Determine the volume of this

$$
\begin{align*}
& \text { semi-circular trough. } \\
& \begin{aligned}
V & =\frac{1}{2} \pi r^{2} h \\
& =(0.5)(3.14)(0.5)^{2}(8)
\end{aligned} \quad 8 \mathrm{~m}=3.14 \mathrm{~m}^{3} \tag{8}
\end{align*}
$$

5. Avery thinks that if you want to double the volume of this cylinder, you must double the

$$
V=\pi r^{2} h
$$ height of it. Monica believes that to double the volume, you must double the radius. Prove

$$
V=(3.14)(8)^{2}(14)
$$ who is right.

$$
V=2813.44
$$

Ba)

$$
\begin{array}{ll}
\text { a) } \begin{array}{ll}
V=\pi r^{2} h & \text { Sb) } V=\pi r^{2} h \\
(502.4)=(3.14) r^{2}(16) & (1230.88)=(3.14) r^{2}(8) \\
\frac{502.4}{31.4}=\frac{31.4 r^{2}}{31.4} & \frac{1230.88}{25.12}=\frac{25.12 r^{2}}{25.12} \\
\sqrt{16}=\sqrt{r^{2}} & \sqrt{49}=\sqrt{r^{2}} \\
4 \mathrm{~cm}=r \quad & 7 \mathrm{~cm}=r
\end{array},
\end{array}
$$

$$
\text { Bc) } v=\pi r^{2} h
$$

*5

$$
\text { c) (2653.3)= } \underbrace{(3.14) r^{2}(5)} \begin{aligned}
& V=\pi r^{2} h \\
&=(3.146)^{2}(28)
\end{aligned}
$$

$$
\frac{2653.3}{15.7}=\frac{15.7 r^{2}}{15.7}
$$

$$
V=5626.88
$$

$$
\begin{aligned}
& \text { IF r DOUBLES: } \\
& V=\pi r^{2} h \\
& =(3.14)(16)^{2}(14) \\
& V=11253.76
\end{aligned}
$$

$$
\begin{aligned}
& \text { AVER1 15! } \\
& \text { RIGHT ! }
\end{aligned} \int \begin{aligned}
& \frac{5626.88}{\frac{2813.49}{\text { DOUBLE }}}=2
\end{aligned}
$$

