Date:

10.1 notes: Modeling and Solving a One-Step Equation

Review:

How is an equation different from an expression?
An equation has an equals sigh
Examples:
Expression: $2 x+1 \quad$ Equation: $y=2 x+1$

Variable - a letter (an unknown number)
Constant - a number that is un attached to a variable

Identify the coefficient, variable and constant in each expression:

$3 x-2$	$-x+1$	$5-2 x$	$x-1$	
co-eff: 3	co-eff: -1	co-eff: -2	coeff: none (1)	
var: x	var: x	var: x	vas: x	
con: -2	con	1	con: 5	con:

We saw that an equation can be solved by inspection.

$$
\begin{aligned}
& \frac{3 x}{3}=\frac{12}{3} \\
& \hline x=4
\end{aligned} \begin{gathered}
\frac{x}{3}=5 \\
\times 3 \times 3 \\
x=15
\end{gathered}
$$

An equation can also be solved using a diagram:
$3 x=12$

$$
\frac{x}{3}=5
$$

$$
x=15
$$

The best way to solve an equation is to apply the opposite process.
Example:

$$
\begin{aligned}
\text { a) } \frac{4 x}{4} & =\frac{8}{4} \\
x & =2
\end{aligned}
$$

d) $\frac{x}{4}=2$

$$
x=8
$$

e) $\frac{a}{5}=-4$

$$
\begin{aligned}
& 55 \times 5 \\
& a=20
\end{aligned}
$$

$$
\begin{aligned}
\text { c) } \frac{7 a}{7} & =\frac{21}{7} \\
a & =3
\end{aligned}
$$

Examples:

Write an equation and solve using the opposite operation for each of the following:
The average temperature in Vancouver is twice as warm as the temperature in Toronto. If the temperature in Vancouver is $12^{\circ} \mathrm{C}$, what is the temperature in Toronto?

Alejandro is making bead necklaces. He has 144 beads which he will use to make 9 necklaces. How many beads are on each necklace?

$$
\begin{aligned}
& \text { TOD } \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& \text { LET } b \text { BE THE NUMBER OF BEADS } \\
& \qquad \begin{aligned}
\frac{9 b}{9} & =\frac{144}{9} \\
b & =16
\end{aligned}
\end{aligned}
$$

How can you check to see if your answer is correct?
Solve:

$$
\begin{aligned}
& \frac{6 x}{6}=\frac{-42}{6} \\
& x=-7
\end{aligned}
$$

Check: $\underset{x \rightarrow}{ } 6 x=-42$

$$
\begin{aligned}
6(-7) & =-42 \\
-42 & =-42
\end{aligned}
$$

