10.1 notes: Modeling and Solving a One-Step Equation

Review:

How is an equation different from an expression?

Examples:

Expression:
$$2z+1$$
 Equation: $y=2z+1$

Important Terms

Identify the coefficient, variable and constant in each expression:

$$3x-2$$
 $-x+1$ $5-2x$ $x-1$ $co-eff: 3$ $co-eff: -1$ $co-eff: -2$ $coeff: none$ (1) $var: x$ $var: x$

We saw that an equation can be solved by inspection.

$$\frac{3x=12}{3} \Rightarrow 4$$

$$3c=4$$

$$\frac{x}{3} = 5$$

$$\times 3 \times 3$$

$$2 \leq 15$$

An equation can also be solved using a diagram:

The best way to solve an equation is to apply the opposite process.

Example:

a)
$$4x = 8$$
 $4 = 7$
 $2x = 2$

$$\frac{5}{3} = \frac{15}{3}$$

$$2 = -5$$

e)
$$\frac{a}{5} = -4$$
 $\times 5 \times 5$

$$\alpha = 20$$

g)
$$\frac{x}{-2} = 7$$

 $\times (-1) \times (-1)$
 $0 < -14$

h)
$$\frac{-a}{3} = 3$$

$$\begin{array}{cccc}
\times 3 & \times 3 \\
-a & 9 \\
\hline
-1 & -1
\end{array}$$

$$\begin{array}{cccc}
\alpha = -9
\end{array}$$

c)
$$\frac{7a = 21}{7}$$
 $\frac{7}{7}$

f)
$$\frac{x}{2} = \frac{3}{4}$$

$$\frac{3}{4} \times 2$$

$$= \frac{3}{4} \times \frac{2}{1}$$

$$2c = \frac{3}{2}$$

$$= \frac{3}{4} \times \frac{2}{1}$$

$$= \frac{3}{4} \times \frac{2}{1}$$

Examples:

Write an equation and solve using the opposite operation for each of the following:

The average temperature in Vancouver is twice as warm as the temperature in Toronto. If the temperature in Vancouver is $12^{\circ}C$, what is the temperature in Toronto?

Alejandro is making bead necklaces. He has 144 beads which he will use to make 9 necklaces. How many beads are on each necklace?

LET
$$b$$
 BE THE NUMBER OF BEADS
$$\frac{9b}{9} = \frac{144}{9}$$

$$b = 16$$

How can you check to see if your answer is correct?

Solve:

$$6x = -42$$

$$6x = -7$$

Check:
$$6x = -42$$

 $6(-7) = -42$
 $-42 = -42$