
9.2 Notes: Patterns in a Table of Values

Alvin is cooking a turkey in a very old oven, and needs to heat the turkey to an internal temperature of 250 degrees. For absolutely no reason at all, he decides to make a table of values comparing how long it takes to reach different temperatures:
$(0,0) \begin{aligned} & \mathrm{X} \text { represents the amount of time in minutes } \\ & \text { y represents the temperature in degrees }\end{aligned}$

x	y
0	0
1	50
2	100
3	150
4	200

Graph the ordered pairs:
Does this represent a linear relationship?

yes
Because the points are all in a straight line.

What is the relationship between X and y ? $\quad 4$
The relationship can be represented in $\not \approx$ ways:

1. Words: increasing by $50^{\circ} \mathrm{C}$ per minute
2. table: see above
3. graph: see above
4. equation: $y=50 x+0$

$$
y=50 x
$$

A variable is:	An expression is:
an unknown	A math "phrase"
number, represented	combining numbers,
as a letter	variables, and opera actions
$(e . g . x)$	$(e . g .2 x+7)$

How can you tell if a table represents a linear relationship? \rightarrow graph it.

Relationship A

X	2	4	6	8
y	3	7	11	15

Relationship B a straight line?

X	1	2	3	4
y	1	4	7	9

Is there a way to tell if a table represents a linear relationship WITHOUT graphing?
Think about how you can describe the relationship in words:
Does it "go up" by the same amount every time?

You can tell if a table represents a linear relationship by:
examining the table $>$ does the data incracosc by the same amount every time?

Problem:
Wendy is buying shirts. The company charges $\$ 60$ for the first shirt, and $\$ 15$ for each extra shirt. Complete the table:

$\#$ of shirts	1	2	3	4
Cost	60	$\underbrace{75}_{+15}$	105	105

Is this a linear relationship? How do you know?
Yes. It goes up by $\$ 15$ every time.
How much should 12 shirts cost?

$$
\text { So: } x=60+11(15)<4 x=\$ 225
$$

Equation:

$$
\begin{aligned}
& C=155+45 \\
& C=15(12)+45 \\
& C=\$ 225
\end{aligned}
$$

Does this represent a linear relationship? Yes!
proof: add a column to the table:

x	2	3	4	5	6
y	6	10	14	18	22

What happens if you try to plot it on a graph?
The points are on a straight line.

x	2	3	5	6
y	$\overbrace{+4}^{+1}$	$\underbrace{10}$	18	22
$\underbrace{+2}_{+8}$	$\underbrace{+1}_{+4}$			

$$
\begin{array}{ccc}
\frac{4}{1} & \frac{8}{2} & \frac{4}{1} \\
3 & 3 & 3 \\
4 & 4 & 4
\end{array}
$$

There is a consistent pattern, but ...
there is a missing point triangle l are

